Physical Zero-Knowledge Proofs for Akari, Takuzu, Kakuro and KenKen

X. Bultel1 J. Dreier2 J-G. Dumas3 P. Lafourcade1

1LIMOS, University Clermont Auvergne, France
2Université de Lorraine, LORIA, Nancy, France
3LJK, Université Grenoble Alpes, Grenoble, France

FUN’16, 9th June 2016, Sardinia
Zero-Knowledge proof of knowledge

Prover knows a solution s of P

Verifier knows the problem P

bla bla... \[\rightarrow\]

bla bla? \[\leftarrow\]

bla bla! \[\rightarrow\]

accept or reject s as a solution of P
Completeness

Prover knows a solution s of P

Verifier knows the problem P

bla bla…

bla bla?

bla bla!

Hum, ok…
I’m convinced!
s is a solution of P
Soundness

Prover does not know a solution s of P

Verifier knows the problem P

bla bla...

bla bla?

bla bla!

Hum, ...

I detect a problem!

s is not a solution
Zero-Knowledge

Prover knows a solution s of P

Verifier knows the problem P

bla bla...

<table>
<thead>
<tr>
<th>bla bla?</th>
</tr>
</thead>
</table>

| bla bla! |

I do not learn anything about s
Origins of ZKP

Related Works

R. Gradwohl, M. Naor, B. Pinkas, and G. N. Rothblum \textit{(FUN’07)}

Physical (using cards) ZKP for Sudoku.

<table>
<thead>
<tr>
<th>Prover</th>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{array}{</td>
<td>c</td>
</tr>
</tbody>
</table>

bla bla bla... →
bla bla bla?
bla bla bla!
accept or reject
Contributions

Physical Zero-Knowledge Proofs for 4 NP-complete games:

- **Akari**
- **Takuzu**
- **Kakuro**
- **KenKen**
1 Zero-Knowledge Proofs and Logical Games
 - Zero-Knowledge proofs
 - Related Works

2 Akari
 - Rules for Akari
 - ZKP Protocol

3 Kakuro
 - Rules for Kakuro
 - ZKP Protocol
 - Extension to KenKen

4 Conclusion
GOAL: Place lights on the white cells on the grid such that 3 constraints are respected.
A light \(\bigcirc \) illuminates the whole row and column up to a black cell.
Constraints (1/3)

- Two lights cannot illuminate each other

```
   〇 〇 〇 〇
   〇 4 〇 〇
   〇 〇 1 〇
   0 0 〇 〇
   〇

   〇 〇 〇 〇
   〇 4 〇 〇
   〇 〇 1 〇
   0 0 〇 〇
   〇
```
Contraints (2/3)

- All cells are illuminated!
Contraints (3/3)

- Numbers in black cells = adjacent lights
Prover Commitment

Prover commitment:

- use the empty grid, empty cards and ○ cards.
Prover commitment:

- use the empty grid, empty cards and ○ cards.
- put a packet of identical cards on each white cell according to the solution.
Verification (1/3)

Numbers in black cells = adjacent lights
Verification (1/3)

Numbers in black cells = adjacent lights

For each black cell with number x:
pick one card in all adjacent white cells and shuffle them.
Verification (1/3)

Numbers in black cells = adjacent lights

For each black cell with number x:
- pick one card in all adjacent white cells and shuffle them.

\lor checks that there is exactly $x \circ$ cards.
Verification (2/3)

No two lights see each other \iff At most one \bullet by row/column.
Verification (2/3)

No two lights see each other \iff At most one \(\bigcirc \) by row/column.
For each row/column, take one card per cell and shuffle them.
Verification (2/3)

No two lights see each other ⇔ At most one ○ by row/column. For each row/column, take one card per cell and shuffle them.

- **case 1**, empty cards: P adds a ○ card
Verification (2/3)

No two lights see each other \iff At most one \bigcirc by row/column. For each row/column, take one card per cell and shuffle them.

- **case 1**, empty cards: P adds a \bigcirc card \rightarrow exactly 1 \bigcirc
Verification (2/3)

No two lights see each other \iff At most one \bigcirc by row/column. For each row/column, take one card per cell and shuffle them.

- **case 1**, empty cards: P adds a \bigcirc card \rightarrow exactly 1 \bigcirc
- **case 2**, one \bigcirc: P adds an empty card
No two lights see each other \iff \text{At most one } \bigcirc \text{ by row/column.}
For each row/column, take one card per cell and shuffle them.

- **case 1**, empty cards: P adds a \bigcirc card \rightarrow exactly 1 \bigcirc
- **case 2**, one \bigcirc: P adds an empty card \rightarrow exactly 1 \bigcirc

V checks that there is exactly one \bigcirc card.
Verification (3/3)

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

All cells are illuminated ⇔ For each cell, at least one `○` in its row and column.
Verification (3/3)

All cells are illuminated \iff For each cell, at least one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.
All cells are illuminated ⇔ For each cell, at least one ○ in its row and column.
For each cell, take one card per cell in the same row and column and shuffle them.

- **case 1**, one ○: P adds a ○ card
Verification (3/3)

All cells are illuminated \Leftrightarrow For each cell, at least one \bigcirc in its row and column.

For each cell, take one card per cell in the same row and column and shuffle them.

- case 1, one \bigcirc: P adds a \bigcirc card \rightarrow exactly 2 \bigcirc

All cells are illuminated ⇔ For each cell, at least one in its row and column.
For each cell, take one card per cell in the same row and column and shuffle them.

- case 1, one : P adds a card → exactly 2
- case 2, two : P adds an empty card
Verification (3/3)

All cells are illuminated ⇔ For each cell, at least one ○ in its row and column.
For each cell, take one card per cell in the same row and column and shuffle them.

- **case 1**, one ○: P adds a ○ card ↦ exactly 2 ○
- **case 2**, two ○: P adds an empty card ↦ exactly 2 ○
All cells are illuminated \iff For each cell, at least one \bigcirc in its row and column.
For each cell, take one card per cell in the same row and column and shuffle them.

- case 1, one \bigcirc: P adds a \bigcirc card \rightarrow exactly 2 \bigcirc
- case 2, two \bigcirc: P adds an empty card \rightarrow exactly 2 \bigcirc

V checks that there is exactly two \bigcirc cards.
1 Zero-Knowledge Proofs and Logical Games
 • Zero-Knowledge proofs
 • Related Works

2 Akari
 • Rules for Akari
 • ZKP Protocol

3 Kakuro
 • Rules for Kakuro
 • ZKP Protocol
 • Extension to KenKen

4 Conclusion
Kakuro: Cross Sums

- Digits from 1 to 9.
- Triangular cell = sum of digits in the row/column
- A number can appear only once per row/column.
Digit Encoding

Using black and red cards.
To represent a number x put in an envelope:
- $9 - x$ black cards
- x red cards

For 3:

\[\text{■■■■■■■■■} \rightarrow \text{Envelope}\]
Prover Commitment

- Draw an empty grid

Commitment:
Prover Commitment

- Draw an empty grid
- On each empty cell: put 4 identical envelopes encoding the digit

Commitment:
Prover Commitment

- Draw an empty grid
- **On each empty cell:** put 4 identical envelopes encoding the digit
- **On each triangular cell:** put envelopes encoding all missing digits in the row/column

Commitment:

$\times7$ for 3, 4, 5, 6, 7, 8 and 9
Verification (1/2)

A number appears only once per row/column

- For each row/column, pick an envelope per cell plus the envelopes on the triangular cell.
Verification (1/2)

A number appears only once per row/column

- For each row/column, pick an envelope per cell plus the envelopes on the triangular cell.
- Shuffle and open them.
Verification (1/2)

A number appears only once per row/column

- For each row/column, pick an envelope per cell plus the envelopes on the triangular cell.
- Shuffle and open them.
- Verify that all numbers between 1 and 9 appear exactly once.

1,2,3,4,5,6,7,8,9
Verification (2/2)

The sum per row and per column corresponds to the number in the triangular cell

- Randomly picks one envelope per cell in the row/column.
- Opens (face down) the content of each envelope and shuffle it.
- Check that red cards corresponds to the number given in the triangular cell.

\[
\begin{array}{ccc}
4 & & 3 \\
3 & 1 & 2 \\
4 & & \\
\end{array}
\]

\[
\begin{array}{c}
\text{Red cards} \\
\text{Total sum}
\end{array}
\]

\[
\begin{array}{c}
\text{X.Bultel et al.} \\
ZKP for Akari et al. \\
FUN’16
\end{array}
\]
KenKen

- **Addition**: similar to Kakuro.
- **Multiplication**: addition of the exponent of each prime factors.

\[9 \times 6 = (2^03^2) \times (2^13^1) = 2^{0+1}3^{2+1} = 54 \]

- **Subtraction/division**: finding the maximum.
Conclusion

Physical Zero-Knowledge Proofs for:

- Akari
- Takuzu
- Kakuro
- KenKen

More Games!
Conclusion

Physical zero-knowledge mechanisms for several constraints:

- At least/most one occurrence of a symbol in a row/column.
- Equality of the number of 1 and 0 per row/column.
- Result of the addition/subtraction of cells.
- Result of the multiplication/division of cells.
- Number of adjacent symbol.
- All rows/columns are different.
- No \(k \) consecutive identical symbols.
Thank you for your attention.

Questions?
Takuzu Rules: Binary Puzzle

Goal: fill the grid with 0’s and 1’s

![Takuzu Grid Example](image)

- Each row/column has exactly the same number of 1’s and 0’s
- Each row/column is unique
- In each row/column there can be no more than 2 identical numbers next to each other: **110010**, but **110001**

![Takuzu Grid Example](image)