Monitoring Electronic Exams

Ali Kassem1, Yliès Falcone2 and Pascal Lafourcade3

1Univ. Grenoble Alpes, VERIMAG, Grenoble, France
2Univ. Grenoble Alpes, Inria, LIG, Grenoble
3Université Clermont Auvergne, LIMOS, France

The 15th International Conference on Runtime Verification

Vienna, September 28, 2015
Traditional Exam
Information technology for the assessment of knowledge and skills.
Threats...

- Candidate cheating
- Bribed, corrupted or unfair examiners
- Dishonest/untrusted exam authority
- Outside attackers
- ...
Most existing e-exam systems assume trusted authorities and focus on student cheating:

- Exam centers
- Software solutions, e.g. ProctorU
... and their Mitigation

Most existing e-exam systems assume trusted authorities and focus on student cheating:

- Exam centers
- Software solutions, e.g. ProctorU

Yet also the other threats are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)
Most existing e-exam systems assume **trusted authorities** and focus on **student cheating**:

- Exam centers
- Software solutions, e.g. ProctorU

Yet also the **other threats** are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

So what about **dishonest authorities** or **hackers**?
Several Security Properties

Secrypt’14 **Authentication Properties:** Mark Authenticity, Answer Origin Authentication, Form Authorship, Form Authenticity.

Privacy Properties: Anonymous Marking, Question Indistinguishability, Anonymous Examiner, Mark Privacy, Mark Anonymity

ISPEC’15 **Individual Verifiability:** Question Validity, Marking Correctness, Exam-Test Integrity, Exam-Test Markedness, Marking Integrity, Marking Notification Integrity

Universal Verifiability: Eligibility (Registration), Marking Correctness Exam-Test Integrity, Exam-Test Markedness, Marking Integrity.
Several Security Properties

Secrypt’14 Authentication Properties: Mark Authenticity, Answer Origin Authentication, Form Authorship, Form Authenticity.
Privacy Properties: Anonymous Marking, Question Indistinguishability, Anonymous Examiner, Mark Privacy, Mark Anonymity

ISPEC’15 Individual Verifiability: Question Validity, Marking Correctness, Exam-Test Integrity, Exam-Test Markedness, Marking Integrity, Marking Notification Integrity
Universal Verifiability: Eligibility (Registration), Marking Correctness Exam-Test Integrity, Exam-Test Markedness, Marking Integrity.

How can we use it on real e-exam?
Plan

Introduction

Model

Properties

Case Study: UJF E-exam

Conclusion
Plan

Introduction

Model

Properties

Case Study: UJF E-exam

Conclusion
E-exam: Players and Organization

Three Roles:

Candidate

Examination Authority

Examiner
E-exam: Players and Organization

Three Roles:

Candidate

Examination Authority

Examiner

Four Phases:

Event Based Model

1. Registration
 Register

2. Examination
 begin
 get
 Question
 change
 submit
 accept
 Answer
 end
Event Based Model

1. Registration
Event Based Model

1. Registration

Register

register()
Event Based Model

1. Registration
 Register
 $register(\text{student})$

2. Examination
Event Based Model

1. Registration
 - Register

2. Examination
 - $begin()$

- $register()$
Event Based Model

1. Registration
 Register
 \[\text{register}(\text{\textbullet}) \]

2. Examination
 begin
 \[\text{begin}(\text{\textbullet}) \]
 get
 \[\text{get}(\text{\textbullet}, \text{?}) \]
 Question
Event Based Model

1. Registration
 - Register
 - \(\text{register}(\text{•}) \)

2. Examination
 - \(\text{begin}() \)
 - \(\text{get}() \)
 - \(\text{change}() \)
Event Based Model

1. Registration

2. Examination

begin

get

change

submit

register

Question

Answer

accept
Event Based Model

1. Registration
 - Register
 - register

2. Examination
 - begin
 - get
 - change
 - submit
 - end
 - Question
 - Answer
 - accept
Event Based Model

3. Marking

Correct Answer

Evaluation

Mark 12 / 30
Event Based Model

3. Marking

\[corr(?, \checkmark) \]

Correct Answer
3. Marking

$corr(?,\checkmark)$

Correct Answer

Evaluation

$mark(?,\ ?,\ !,\ T/F)$
Event Based Model

3. Marking

\[corr(\text{?}, \text{✓}) \]
Correct Answer

Evaluation

\[mark(\text{!}, \text{?}, \text{!}, \text{TF}) \]

4. Notification
Event Based Model

3. Marking

4. Notification

Correct Answer

Evaluation

Mark

Assign

corr(?, ✓)

mark(, ?, !, TF)

assign(, A+)
Plan

Introduction

Model

Properties

Case Study: UJF E-exam

Conclusion
Quantified Event Automata (QEAs)

- Properties expressed as **QEAs** [BFH+12]: event automaton with quantified variables.

- An event automaton is a **finite-state machine** with transitions labeled by parametric events.

- Transitions may include **guards** and **assignments**.

- We extend the initial definition of QEAs by:
 1. variable declaration and **initialization** before reading the trace
 2. **global variable** shared among all event automaton instances.

\[
event(\text{parameters}) \frac{[\text{guard}]}{\text{assignment}}
\]
Candidate Eligibility

No answer is accepted from an unregistered candidate

\[\Sigma = \{ \text{register}(i), \text{accept}(i, q, a) \} \]

\[\forall i \]

![Diagram showing a transition from 1 to 2 labeled with register(i)]
Candidate Eligibility

No answer is accepted from an unregistered candidate

\[\forall i \text{ register}(i) \]

\[\Sigma = \{ \text{register}(i), \text{accept}(i, q, a) \} \]
Candidate Eligibility with Auditing

All candidates that violates the requirement are collected in a set F.

Initially: $I : \triangleq \emptyset$

- **Register** $(i) \quad I := I \cup \{i\}$
- **Accept** $(i, q, a) \quad [i \notin I] \quad F := F \cup \{i\}$
Candidate Registration: an unregistered candidate tried to take the exam.
Properties

Candidate Registration: an unregistered candidate tried to take the exam.

Answer Authentication:
- an unsubmitted answer was considered as accepted; or
- more than one answer were accepted from a candidate.
Candidate Registration: an unregistered candidate tried to take the exam.

Answer Authentication:
- an unsubmitted answer was considered as accepted; or
- more than one answer were accepted from a candidate.

Questions Ordering:
- a candidate got a question before validating the previous ones.
Exam Availability: an answer was accepted outside exam time.
Exam Availability: an answer was accepted outside exam time.

Exam Availability with Flexibility:

- supports different duration and starting time between candidates.
Exam Availability: an answer was accepted outside exam time.

Exam Availability with Flexibility:

- supports different duration and starting time between candidates.

Marking Correctness: an answer was marked in a wrong way.
Exam Availability: an answer was accepted outside exam time.

Exam Availability with Flexibility:
- supports different duration and starting time between candidates.

Marking Correctness: an answer was marked in a wrong way.

Mark Integrity:
- an accepted answer was not marked; or
- a candidate was not assigned the corresponding mark.
Plan

Introduction

Model

Properties

Case Study: UJF E-exam

Conclusion
Registration:

- 2 weeks before the exam.
- Using login/password.
Examination in a supervised room

Authentication and answers questions as follows:

▶ In a fixed order.

▶ Once validates the current question, he gets the next one.

▶ He can change the answer unlimited times before validating.

▶ Once he validates, then he cannot go back and change any of the validated answers.
Marking:

- For each question, the professor specifies the correct answer(s).
- For each question, all the answers provided by the candidates are collected.
- Each answer is evaluated by an examiner to 0 or 1.
- The mark for each candidate is calculated as the summation of all the scores attributed to his answers.

Notification:

- The marks are notified to the candidates.
- A candidate can consult his submission and check the marking.
Analysis

Verification of two real e-exam executions using MarQ tool [RCR15].

From the logs: $\text{register}(i)$, $\text{change}(i, q, a)$, $\text{submit}(i, q, a)$, $\text{accept}(i, q, a)$.

4 Properties

- Candidate Registration
- Candidate Eligibility
- Answer Authentication
- Exam Availability
5 new properties

- **Answer Authentication**:
 - All accepted answers are submitted by candidates.
 - Allow the acceptance of the same answer again.
 - But, still forbids the acceptance of a different answer.
5 new properties

- **Answer Authentication**: All accepted answers are submitted by candidates. Allow the acceptance of the same answer again. But, still forbids the acceptance of a different answer.

- **Answer Authentication Reporting**: Collects in a set F every candidate from which more than one answer are accepted.
5 new properties

- **Answer Authentication**: All accepted answers are submitted by candidates. Allow the acceptance of the same answer again. But, still forbids the acceptance of a different answer.

- **Answer Authentication Reporting**: Collects in a set F every candidate from which more than one answer are accepted.

- **Answer Editing**: A candidate cannot change an answer after validation it.
5 new properties

- **Answer Authentication**: All accepted answers are submitted by candidates. Allow the acceptance of the same answer again. But, still forbids the acceptance of a different answer.

- **Answer Authentication Reporting**: Collects in a set F every candidate from which more than one answer are accepted.

- **Answer Editing**: A candidate cannot change an answer after validation it.

- **Question Ordering**: A candidate cannot changes the answer to a future question before validating the current question.
5 new properties

- **Answer Authentication**: All accepted answers are submitted by candidates.
 - **Allow the acceptance of the same answer again**.
 - **But, still forbids the acceptance of a different answer**.
- **Answer Authentication Reporting**: Collects in a set F every candidate from which more than one answer are accepted.
- **Answer Editing**: A candidate cannot change an answer after validation it.
- **Question Ordering**: A candidate cannot change the answer to a future question before validating the current question.
- **Acceptance Order**: A candidate has to validate the questions in order, but he can skip some questions.
Results: Exam 1

233 students, 40875 events

<table>
<thead>
<tr>
<th>Property</th>
<th>Result</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Registration</td>
<td>✓</td>
<td>538</td>
</tr>
<tr>
<td>Candidate Eligibility</td>
<td>✓</td>
<td>517</td>
</tr>
<tr>
<td>Answer Authentication</td>
<td>×</td>
<td>310</td>
</tr>
<tr>
<td>Exam Availability</td>
<td>✓</td>
<td>518</td>
</tr>
<tr>
<td>Answer Authentication *</td>
<td>✓</td>
<td>742</td>
</tr>
<tr>
<td>Answer Authentication Reporting</td>
<td>× [1]</td>
<td>654</td>
</tr>
<tr>
<td>Answer Editing</td>
<td>✓</td>
<td>641</td>
</tr>
<tr>
<td>Question Ordering *</td>
<td>×</td>
<td>757</td>
</tr>
<tr>
<td>Acceptance Order</td>
<td>✓</td>
<td>697</td>
</tr>
</tbody>
</table>
Results: Exam 2

90 students, 4641 events

<table>
<thead>
<tr>
<th>Property</th>
<th>Result</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Registration</td>
<td>✓</td>
<td>230</td>
</tr>
<tr>
<td>Candidate Eligibility</td>
<td>✓</td>
<td>214</td>
</tr>
<tr>
<td>Answer Authentication</td>
<td>✓</td>
<td>275</td>
</tr>
<tr>
<td>Exam Availability</td>
<td>✗ [1]</td>
<td>237</td>
</tr>
<tr>
<td>Answer Authentication *</td>
<td>✓</td>
<td>223</td>
</tr>
<tr>
<td>Answer Authentication Reporting</td>
<td>✓</td>
<td>265</td>
</tr>
<tr>
<td>Answer Editing</td>
<td>✗</td>
<td>218</td>
</tr>
<tr>
<td>Question Ordering *</td>
<td>✗</td>
<td>389</td>
</tr>
<tr>
<td>Acceptance Order</td>
<td>✓</td>
<td>294</td>
</tr>
</tbody>
</table>
Plan

Introduction

Model

Properties

Case Study: UJF E-exam

Conclusion
Conclusion

- Event-based model of e-exams.
- Several properties defined as QEAs.
- Analysis of 2 real e-exams at UJF using MarQ tool.
- Discovering some misbehaviours.
Future Work

- Analyze more existing e-exams from other universities.
- Perform on-line verification with our monitors during live e-exams.
- Study more expressive and quantitative properties that can detect colluded students through similar answer patterns.
- Automatic transformation from verifiability to monitors.
Thank you for your attention!

Questions?

pascal.lafourcade@udamail.fr
Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.
Quantified event automata: Towards expressive and efficient runtime monitors.

Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard.
MarQ: Monitoring at runtime with QEA.
No answer is accepted from an unregistered candidate.
Initially: $I : \triangleq \emptyset$

- $\text{accept}(i, q, a)$ \quad $F \triangleq F \cup \{(i, q, a)\}$

- $\text{register}(i)$ \quad $I \triangleq I \cup \{i\}$

- $\text{register}(i)$ \quad $I \triangleq I \cup \{i\}$
Answer Authentication

- All accepted answers are submitted by candidates.
- Exactly one answer is accepted from each candidate.
A candidates can take the exam only during the examination time.

\[
\Sigma_{EA}(i, t) \begin{cases} [t_0 \leq t \leq t_f] \\
F \triangleq \{i\} \end{cases}
\]

\[
\Sigma_{EA}(i, t) \begin{cases} [t_0 > t \lor t > t_f] \\
F \triangleq F \cup \{i\} \end{cases}
\]

- \(\Sigma_{EA} = \{get(i, t), change(i, t), submit(i, t), accept(i, t)\}\).
- \(t_0\) is the starting instant of the exam.
- \(t_f\) is the ending instant of the exam.
Exam Availability with Flexibility

Exam Availability with flexible starting time and duration.

∀ i

$\begin{align*}
\text{begin}(i, t) & \quad \frac{[t_1 \leq t \leq t_2]}{t_b \triangleq t} \\
\text{accept}(i, t) & \quad [t_b \leq t \leq t_2 \land t - t_b \leq \text{duration}_i]
\end{align*}$

- t_1 is the starting instant of the allowed period.
- t_2 is the ending instant of the allowed period.
All answers were marked correctly.

\[\forall q, A : \hat{\exists} \emptyset \]

\[\text{corrAns}(q, a) \quad \overline{A : \hat{=} A \cup \{a\}} \]

\[\text{marked}(q, a, b) \quad [(b=1 \iff a \in A)] \]

\[\text{marked}(q, a, b) \quad [b=1 \iff a \in A] \]
All accepted answers were marked;
each candidate was assigned the mark attributed to his answers.
A weaker variant of Answer Authentication:

- All accepted answers are submitted by candidates.
- Allow the acceptance of the same answer again.
- But, still forbids the acceptance of a different answer.

Motivation: UJF exam allows the acceptance of the same answer twice.
Collects in a set F every candidate from which more than one answer are accepted.

Global: $F : \triangleq \emptyset \ \forall q$

- $\text{accept}(i, q, a) \quad \frac{[i \notin A]}{A : \triangleq A \cup \{i\}}$
- $\text{accept}(i, q, a) \quad \frac{[i \notin A]}{A : \triangleq A \cup \{i\}}$
- $\text{accept}(i, q, a) \quad \frac{[i \in A]}{F : \triangleq \{i\}}$
- $\text{accept}(i, q, a) \quad \frac{[i \in A]}{F : \triangleq F \cup \{i\}}$

Diagram:

1. $\text{accept}(i, q, a) \quad \frac{[i \notin A]}{A : \triangleq \{i\}}$
2. $\text{accept}(i, q, a) \quad \frac{[i \in A]}{F : \triangleq \{i\}}$
3. $\text{accept}(i, q, a) \quad \frac{[i \in A]}{F : \triangleq F \cup \{i\}}$
A candidate cannot change an answer after validation it.

\[\forall i, \forall q \]

\[\text{change}(i, q) \quad \text{accept}(i, q, a) \quad [a=a_v] \]

Motivation: UJF exam does not allow a candidate to change any of the previously validated answers.
A candidate cannot change the answer to a future question before validating the current question.

\[
\begin{align*}
\forall i \quad & \quad \text{change}(i, q) & \quad \text{[ord}(q)=1] \\
& \quad \text{accept}(i, q) & \quad \text{[ord}(q)=1] \quad c: \not=2 \\
\quad & \quad \text{accept}(i, q) & \quad \text{[ord}(q)<c] \\
\quad & \quad \text{accept}(i, q) & \quad \text{[ord}(q)=c] \quad c++ \\
\quad & \quad \text{change}(i, q) & \quad \text{[ord}(q)<c] \\
\quad & \quad \text{change}(i, q) & \quad \text{[ord}(q)=c] \\
\quad & \quad \text{accept}(i, q) & \quad \text{[ord}(q)<c] \\
\quad & \quad \text{accept}(i, q) & \quad \text{[ord}(q)=c] \quad c++
\end{align*}
\]

Motivation: developers did not log anything related to the event \(\text{get}(i, q) \) (needed for Question Ordering).
Acceptance Order

A candidate has to validate the questions in order, but he can skip some questions.

\[
\forall i, c : \hat{=} 1 \Rightarrow \text{accept}(i, q) \quad (\text{ordq} \geq c) \\
\text{c} := \text{ordq}
\]

Motivation: allows us to check if candidates answer the question in lexicographic order when Question Ordering * fails.

It is the case when a candidate able to skip some questions.