Formal Analysis of Electronic Exams

Jannik Dreier1, Rosario Giustolisi2, Ali Kassem3, Pascal Lafourcade4, Gabriele Lenzini2 and Peter Y. A. Ryan2

1Institute of Information Security, ETH Zurich
2SnT/University of Luxembourg
3Université Grenoble Alpes, CNRS, VERIMAG
4University d’Auvergne, LIMOS

11th International Conference on Security and Cryptography (SECRYPT 2014), Vienna

August 28, 2014
E-exam
Information technology for the assessment of knowledge and skills.
Educational assessment
E-exam: Players and Organization

Three Roles:

Candidate | Examination Authority | Examiner
E-exam: Players and Organization

Three Roles:

Candidate Examination Authority Examiner

Four Phases:

Threats...

- Candidate cheating
- Bribed, corrupted or unfair examiners
- Dishonest/untrusted exam authority
- Outside attackers
- ...
...and their Mitigation

Most existing e-exam systems assume trusted authorities and focus on student cheating:

- Exam centers

- Software solutions, e.g. ProctorU
Most existing e-exam systems assume trusted authorities and focus on student cheating:

▶ Exam centers

▶ Software solutions, e.g. ProctorU

Yet also the other threats are real:

▶ Atlanta Public Schools cheating scandal (2009)
▶ UK student visa tests fraud (2014)
...and their Mitigation

Most existing e-exam systems assume trusted authorities and focus on student cheating:

- Exam centers
- Software solutions, e.g. ProctorU

Yet also the other threats are real:

- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

So what about dishonest authorities or hackers attacking the system?
Most existing e-exam systems assume trusted authorities and focus on student cheating:

- Exam centers
- Software solutions, e.g. ProctorU

Yet also the other threats are real:
- Atlanta Public Schools cheating scandal (2009)
- UK student visa tests fraud (2014)

So what about dishonest authorities or hackers attacking the system?
⇒ need for better protocols and systems (cf. case studies)
...and their Mitigation

Most existing e-exam systems assume trusted authorities and focus on student cheating:

▶ Exam centers

▶ Software solutions, e.g. ProctorU

Yet also the other threats are real:

▶ Atlanta Public Schools cheating scandal (2009)
▶ UK student visa tests fraud (2014)

So what about dishonest authorities or hackers attacking the system?

⇒ need for better protocols and systems (cf. case studies)
⇒ precise formal definitions of required properties
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
Model

- **Processes** in the applied π-calculus
- Annotated using **events**
- **Authentication** properties as **correspondence** between events
- **Privacy** properties as **observational equivalence** between instances
- **Automatic** verification using ProVerif
Model

1. Registration

2. Examination

Questions submitted, collected

3. Marking

distributed, collected

Form marked

4. Notification

notified

Mark
1. Registration

Register

reg()

2. Examination

Questions submitted

Answer

3. Marking

Form marked

Mark

4. Notification

notified

Mark
1. Registration

2. Examination

Register

\(\text{reg(\text{\textbullet})} \)

Marking

Notification
1. Registration

Register

\(reg(\cdot) \)

2. Examination

Questions

\[\text{Submitted} \quad \text{Collected} \quad \text{Answer} \quad \text{Mark} \quad \text{Distributed} \quad \text{Form} \quad \text{Marked} \quad \text{Notified} \]
Model

1. Registration
 Register
 \(\text{reg}() \)

2. Examination
 Questions
 \(\text{submitted}(\text{？}, \text{？}, \text{？}) \)
 Answer
 \(\text{collected}(\text{？}, \text{？}, \text{？}) \)

4. Notification
 \(\text{notified}(\text{？}, \text{？}) \)
1. Registration
 Register
 \(\text{reg}(\cdot) \)

2. Examination
 Questions
 \(\text{submitted}(\cdot, ?, !) \) \(\xrightarrow{\text{Answer}} \) \(\text{collected}(\cdot, ?, !) \)

3. Marking
Model

1. Registration
 Register
 $\text{reg}(\text{ })$

2. Examination
 Questions
 $\text{submitted}(\text{ }, \text{?}, \text{!})$ \rightarrow $\text{collected}(\text{ }, \text{?}, \text{!})$

3. Marking
 $\text{distrib}(\text{ }, \text{?}, \text{!}, \text{QR code}, \text{ })$
 \rightarrow Form
Model

1. Registration
 Register
 \(\text{reg}(\) \)

2. Examination
 Questions
 \(\text{submitted}(\ , \ , \) \rightarrow \text{collected}(\ , \ , \) \)

3. Marking
 \(\text{distrib}(\ , \ ,
 \ , \ , \ , \) \rightarrow \text{marked}(\ , \ ,
 \ , \ , \ , \) \)

4. Notification
 \(\text{notified}(\ , \) \)
1. Registration
 Register
 \(\text{reg}(\cdot) \)

2. Examination
 Questions
 \(\text{submitted}(\cdot, ?, !) \) → \(\text{collected}(\cdot, ?, !) \)

3. Marking
 \(\text{distrib}(\cdot, ?, !,
 \text{Form} \)
 \(\text{marked}(?, !, \text{mark} \)

4. Notification

Model
Model

1. Registration
 Register
 \(\text{reg}(\;) \)

2. Examination
 Questions
 \(\text{submitted}(\; , ?, !) \)
 \(\text{collected}(\; , ?, !) \)

3. Marking
 \(\text{distrib}(\; , ?, !, \),, \)
 \(\text{marked}(?, !, \),, \)

4. Notification
 \(\text{notified}(?, \)\)
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
Answer Origin Authentication

All collected answers originate from registered candidates, and only one answer per candidate is accepted.

Definition:

On every trace:

1. Registration

2. Examination

\[\text{submitted}(\text{student}, \text{question}, \text{answer})\] \[\text{collected}(\text{student}, \text{question}, \text{answer})\]

\[\text{reg}(\text{student})\]

\textit{Preceeded by distinct occurrence}
Form Authorship

Answers are collected as submitted, i.e. without modification.

Definition:

On every trace:

1. Registration

\[\text{Register} \quad \text{reg}(\cdot) \]

2. Examination

\[\text{Questions} \quad \text{submitted}(\cdot, ?, !) \rightarrow \text{Answer} \rightarrow \text{collected}(\cdot, ?, !) \]

preceded by distinct occurrence
Form Authenticity

Answers are marked as collected.

Definition:

On every trace:

2. Examination

Questions

submitted(?, ?, !)

Answer

collected(?, ?, !)

3. Marking

distrib(?, ?, !, ?, ?)

Form

marked(? ! ? ?)

preceeded by distr. occ.
Mark Authenticity

The candidate is notified with the mark associated to his answer.

Definition:

On every trace:

3. Marking

4. Notification

preceded by distinct occurrence
Plan

Introduction

Model and Properties
 - Authentication Properties
 - Privacy Properties

Case Studies
 - Huszti & Pethő’s Protocol
 - Remark! Protocol

Conclusion
Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Exam 1

Question 1

\approx

Exam 2

Question 2
Question Indistinguishability

No premature information about the questions is leaked.

Definition:

Observational equivalence of two instances up to the end of registration phase:

Exam 1

\[\text{Question 1} \approx \text{Question 1} \]

Exam 2

\[\text{Question 2} \]

Can be considered with or without dishonest candidates.
Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

Exam 1

Answer 1

Answer 2

Exam 2

Answer 2

Answer 1
Anonymous Marking

An examiner cannot link an answer to a candidate.

Definition:

Up to the end of marking phase:

- **Exam 1**
 - Answer 1
 - Answer 2

- **Exam 2**
 - Answer 2
 - Answer 1

Can be considered with or without dishonest examiners and authorities.
Anonymous Examiner

A candidate cannot know which examiner graded his copy.

Definition:

![Diagram showing two exams with answers and marks]

Can be considered with or without dishonest candidates.
Marks are private.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities.
Mark Anonymity

Marks can be published, but may not be linked to candidates.

Definition:

Can be considered with or without dishonest candidates, examiners and authorities.

Implied by Mark Privacy.
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
“A Secure Electronic Exam System” [?] using

- ElGamal Encryption
- a Reusable Anonymous Return Channel (RARC) [?] for anonymous communication
- a network of servers providing a timed-release service using Shamir’s Secret Sharing:
 A subset of servers can combine their shares to de-anonymize a candidate after the exam

Goal: ensure

- authentication and privacy

in presence of **dishonest**

- candidates
- examiners
- exam authorities
Formal Verification with ProVerif [?]:

<table>
<thead>
<tr>
<th>Property</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Origin Authentication</td>
<td>×</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Form Authorship</td>
<td>×</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Form Authenticity</td>
<td>×</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Mark Authenticity</td>
<td>×</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Question Indistinguishability</td>
<td>×</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Anonymous Marking</td>
<td>×</td>
<td>8 m 46 s</td>
</tr>
<tr>
<td>Anonymous Examiner</td>
<td>×</td>
<td>9 m 8 s</td>
</tr>
<tr>
<td>Mark Privacy</td>
<td>×</td>
<td>39 m 8 s</td>
</tr>
<tr>
<td>Mark Anonymity</td>
<td>×</td>
<td>1h 15 m 58 s</td>
</tr>
</tbody>
</table>
Main reason

Given its security definition, the RARC

- provides anonymity, but not necessarily secrecy
- does not necessarily provide integrity or authentication
- is only secure against passive attackers

Corrupted parties or active attackers can break secrecy and anonymity, as the following attack shows.
RARC: Mode of Operation and Attack

Input (A to RARC, destination B):

\[
\{ ID_A, PK_A \}^{PK_{RARC}} + PoK; \{ MSG \}^{PK_{RARC}}; \{ ID_B, PK_B \}^{PK_{RARC}} + PoK
\]
RARC: Mode of Operation and Attack

Input (A to RARC, destination B):
\[\{ID_A, PK_A\}_{PK_{RARC}} + PoK; \{MSG\}_{PK_{RARC}}; \{ID_B, PK_B\}_{PK_{RARC}} + PoK \]

Output (RARC to B):
\[\{ID_A, PK_A\}_{PK_{RARC}} + Signature; \{MSG\}_{PK_{B}} \]
RARC: Mode of Operation and Attack

Input (A to RARC, destination B):
\[\{ ID_A, PK_A \}^{PK_{RARC}} + PoK; \{ MSG \}^{PK_{RARC}} ; \{ ID_B, PK_B \}^{PK_{RARC}} + PoK \]

Output (RARC to B):
\[\{ ID_A, PK_A \}^{PK_{RARC}} + Signature; \{ MSG \}^{PK_B} \]

Return (B to RARC, destination A):
\[\{ ID_B, PK_B \}^{PK_{RARC}} + PoK; \{ MSG \}^{PK_{RARC}} ; \{ ID_A, PK_A \}^{PK_{RARC}} + Signature \]
RARC: Mode of Operation and Attack

Input (A to RARC, destination B):

\[
\{ ID_A, PK_A \}^{PK_{RARC}} + PoK; \{ MSG \}^{PK_{RARC}}; \{ ID_B, PK_B \}^{PK_{RARC}} + PoK
\]

Output (RARC to B):

\[
\{ ID_A, PK_A \}^{PK_{RARC}} + Signature; \{ MSG \}^{PK_B}
\]

Return (B to RARC, destination A):

\[
\{ ID_B, PK_B \}^{PK_{RARC}} + PoK; \{ MSG \}^{PK_{RARC}}; \{ ID_A, PK_A \}^{PK_{RARC}} + Signature
\]

Attack

Input (AD to RARC, destination AD):

\[
\{ ID_{AD}, PK_{AD} \}^{PK_{RARC}} + PoK; \{ MSG \}^{PK_{RARC}}; \{ ID_{AD}, PK_{AD} \}^{PK_{RARC}} + PoK
\]
RARC: Mode of Operation and Attack

Input (A to RARC, destination B):
\{ID_A, PK_A\}^{PK_{RARC}} + PoK; \{MSG\}^{PK_{RARC}}; \{ID_B, PK_B\}^{PK_{RARC}} + PoK

Output (RARC to B):
\{ID_A, PK_A\}^{PK_{RARC}} + Signature; \{MSG\}^{PK_B}

Return (B to RARC, destination A):
\{ID_B, PK_B\}^{PK_{RARC}} + PoK; \{MSG\}^{PK_{RARC}}; \{ID_A, PK_A\}^{PK_{RARC}} + Signature

Attack

Input (AD to RARC, destination AD):
\{ID_{AD}, PK_{AD}\}^{PK_{RARC}} + PoK; \{MSG\}^{PK_{RARC}}; \{ID_{AD}, PK_{AD}\}^{PK_{RARC}} + PoK

Output (RARC to AD):
\{ID_{AD}, PK_{AD}\}^{PK_{RARC}} + Signature; \{MSG\}^{PK_{AD}}
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
Application: Remark! Protocol

A recent protocol \([^1]\) using

- ElGamal encryption
- an exponentiation mixnet \([^2]\) to create pseudonyms based on the parties’ public keys
 \(\Rightarrow\) allows to encrypt and sign anonymously
- a public append-only bulletin board

Goal: ensure

- authentication and integrity
- privacy
- verifiability

in presence of dishonest

- candidates
- examiners
- exam authorities
Formal Verification with ProVerif:

<table>
<thead>
<tr>
<th>Property</th>
<th>Result</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer Origin Authentication</td>
<td>✓</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Form Authorship</td>
<td>✓</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Form Authenticity</td>
<td>✓¹</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Mark Authenticity</td>
<td>✓</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Question Indistinguishability</td>
<td>✓</td>
<td>< 1 s</td>
</tr>
<tr>
<td>Anonymous Marking</td>
<td>✓</td>
<td>2 s</td>
</tr>
<tr>
<td>Anonymous Examiner</td>
<td>✓</td>
<td>1 s</td>
</tr>
<tr>
<td>Mark Privacy</td>
<td>✓</td>
<td>3 m 32 s</td>
</tr>
<tr>
<td>Mark Anonymity</td>
<td>✓</td>
<td>-²</td>
</tr>
</tbody>
</table>

¹ after fix
² implied by Mark Privacy
Plan

Introduction

Model and Properties
 Authentication Properties
 Privacy Properties

Case Studies
 Huszti & Pethő’s Protocol
 Remark! Protocol

Conclusion
Conclusion

- **E-exams** are used and vulnerable to attacks
- Cryptographic protocols exist, but **lack formal verification**
- **First formal framework** for analysis of e-exams:
 - Formal model in the **applied \(\pi \)-calculus**
 - **Definitions** for central authentication, integrity and privacy properties
- **Automated verification in ProVerif** of two case studies:
 - Huszti & Pethő’s protocol: Fails on all properties due to severe flaws in protocol design
 - Remark! protocol: Ensures all properties after one fix
- **Future work**: verifiability and accountability, analyzing implementations
Thank you for your attention!

Questions?

jannik.dreier@inf.ethz.ch
Definition (E-exam protocol). An e-exam protocol is a tuple

\[(C, E, Q, A_1, \ldots, A_l, \tilde{n}_p),\]

where

- \(C\) is the process executed by the candidates,
- \(E\) is the process executed by the examiners,
- \(Q\) is the process executed by the question committee,
- \(A_i\)'s are the processes executed by the authorities, and
- \(\tilde{n}_p\) is the set of private channel names.
Definition (E-exam instance). An e-exam instance is a closed process

\[EP = \nu \tilde{n}. (C_{\sigma_{id_1} \sigma_{a_1}} | \ldots | C_{\sigma_{id_j} \sigma_{a_j}} | E_{\sigma_{id_1}' \sigma_{m_1}} | \ldots | E_{\sigma_{id_k}' \sigma_{m_k}} | Q_{\sigma_q} | A_{1\sigma_{dist}} | \ldots | A_l), \]

where

- \(\tilde{n} \) is the set of all restricted names, which includes the set of the protocol’s private channels;
- \(C_{\sigma_{id_i} \sigma_{a_i}} \)'s are the processes run by the candidates, the substitutions \(\sigma_{id_i} \) and \(\sigma_{a_i} \) specify the identity and the answers of the \(i^{th} \) candidate respectively;
- \(E_{\sigma_{id_i}' \sigma_{m_i}} \)'s are the processes run by the examiners, the substitution \(\sigma_{id_i}' \) specifies the \(i^{th} \) examiner’s identity, and \(\sigma_{m_i} \) specifies for each possible question/answer pair the corresponding mark;
Definition (E-exam instance). An e-exam instance is a closed process

\[EP = \nu \tilde{n}. (C \sigma_{id_1} \sigma_{a_1} | \ldots | C \sigma_{id_j} \sigma_{a_j} | E \sigma_{id'_1} \sigma_{m_1} | \ldots | E \sigma_{id'_k} \sigma_{m_k} | Q \sigma_q | A_1 \sigma_{dist} | \ldots | A_l), \]

where

- \(Q \) is the process run by the question committee, the substitution \(\sigma_q \) specifies the exam questions;
- the \(A_i \)'s are the processes run by the exam authorities, the substitution \(\sigma_{dist} \) determines which answers will be submitted to which examiners for grading.

Without loss of generality, we assume that \(A_1 \) is in charge of distributing the copies to the examiners.
Definition (Answer Origin Authentication)

An e-exam protocol ensures Answer Origin Authentication if, for every e-exam process EP, each occurrence of the event \(\text{collected}(id_c, \text{ques}, \text{ans}) \) is \textit{preceded} by a distinct occurrence of the event \(\text{reg}(id_c) \) on every execution trace.

Definition (Form Authorship)

An e-exam protocol ensures Form Authorship if, for every e-exam process EP, each occurrence of the event \(\text{collected}(id_c, \text{ques}, \text{ans}) \) is \textit{preceded} by a distinct occurrence of the event \(\text{submitted}(id_c, \text{ques}, \text{ans}) \) on every execution trace.
Definition (Form Authenticity)

An e-exam protocol ensures Form Authenticity if, for every e-exam process EP, each occurrence of the event \(\text{marked}(\text{ques, ans, mark, id_form, id_e})\) is preceded by a distinct occurrence of the events \(\text{distrib}(\text{id_c, ques, ans, id_form, id_e})\) and \(\text{collected}(\text{id_c, ques, ans})\) on every execution trace.

Definition (Mark Authenticity)

An e-exam protocol ensures Mark Authenticity if, for every e-exam process EP, each occurrence of the event \(\text{notified}(\text{id_c, mark})\) is preceded by a distinct occurrence of the events \(\text{marked}(\text{ques, ans, mark, id_form, id_e})\) and \(\text{distrib}(\text{id_c, ques, ans, id_form, id_e})\) on every execution trace.
Definition (Question Indistinguishability)
An e-exam protocol ensures Question Indistinguishability if for any e-exam process EP that ends with the registration phase, any questions q_1 and q_2, we have that:
$EP_{\{id_Q\}}[Q_{\sigma_q_1}]_{\text{reg}} \approx l EP_{\{id_Q\}}[Q_{\sigma_q_2}]_{\text{reg}}$.

Definition (Anonymous Marking)
An e-exam protocol ensures Anonymous Marking if for any e-exam process EP that ends with the marking phase, any two candidates id_1 and id_2, and any two answers a_1 and a_2, we have that:
$EP_{\{id_1, id_2\}}[C_{\sigma_{id_1}a_1} | C_{\sigma_{id_2}a_2}]_{\text{mark}} \approx l EP_{\{id_1, id_2\}}[C_{\sigma_{id_1}a_2} | C_{\sigma_{id_2}a_1}]_{\text{mark}}$.
Privacy Properties cont’d

Definition (Anonymous Examiner)

An e-exam protocol ensures Anonymous Examiner if for any e-exam process EP, any two candidates id_1, id_2, any two examiners id'_1, id'_2, and any two marks m_1, m_2, we have that:

$$EP\{id_1, id_2, id'_1, id'_2, id_{A_1}\} [C \sigma_{id_1} \sigma_{a_1} | C \sigma_{id_2} \sigma_{a_2} | E \sigma_{id_1} \sigma_{m_1} | E \sigma_{id'_2} \sigma_{m_2} | A_1 \sigma_{dist_1}] \approx l EP\{id_1, id_2, id'_1, id'_2, id_{A_1}\} [C \sigma_{id_1} \sigma_{a_1} | C \sigma_{id_2} \sigma_{a_2} | E \sigma_{id'_2} \sigma_{m_2} | E \sigma_{id'_1} \sigma_{m_1} | A_1 \sigma_{dist_2}]$$

where σ_{dist_1} attributes the exam form of candidate id_1 to examiner id'_1 and the exam form of candidate id_2 to examiner id'_2, and σ_{dist_2} attributes the exam form of candidate id_1 to examiner id'_2 and the exam form of candidate id_2 to examiner id'_1.

Definition (Mark Privacy)

An e-exam protocol ensures Mark Privacy if for any e-exam process EP, any marks m_1, m_2, we have that:

$$EP\{id'\} [E \sigma_{id'} \sigma_{m_1}] \approx l EP\{id'\} [E \sigma_{id'} \sigma_{m_2}]$$
Definition (Mark Anonymity)

An e-exam protocol ensures Mark Anonymity if for any e-exam process EP, any candidates id_1, id_2, any examiner id_1', any answers a_1, a_2 and a distribution σ_{dist} that assigns the answers of both candidates to the examiner, and two substitutions σ_{ma} and σ_{mb} which are identical, except that σ_{ma} attributes the mark m_1 to the answer a_1 and m_2 to a_2, whereas σ_{mb} attributes m_2 to the answer a_1 and m_1 to a_2, we have that:

$$EP_{\{id_1, id_2, id_1', id_A_1\}} \left[C_{\sigma id_1 \sigma a_1} | C_{\sigma id_2 \sigma a_2} | E_{\sigma id_1' \sigma m_a} | A_1 \sigma_{dist} \right] \approx 1$$

$$EP_{\{id_1, id_2, id_1', id_A_1\}} \left[C_{\sigma id_1 \sigma a_1} | C_{\sigma id_2 \sigma a_2} | E_{\sigma id_1' \sigma m_b} | A_1 \sigma_{dist} \right]$$
checkpseudo(pseudo_pub(pk(k), rce),
pseudo_priv(k, exp(rce))) = true

decrypt(encrypt(m, pk(k), r), k) = m

decrypt(encrypt(m, pseudo_pub(pk(k), rce), r), pseudo_priv(k, exp(rce))) = m

getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

checksign(sign(m, pseudo_priv(k, exp(rce))), pseudo_pub(pk(k), rce)) = m
Remark! Protocol

Assumption: The protocol assumes a list of eligible examiners and their public keys PK_E, and a list of eligible candidates and their public keys PK_C.

Examiner Registration
1. NET calculates $r_e = \prod_{i=1}^{k} r_{e_i}$, $PK_E = PK_E^{r_e}$ and $h_e = g^{r_e}$
2. NET publishes $\text{sign}((PK_E, h_e), SK_{NET})$
3. E checks if $PK_E = h_e^{SK_E}$

Candidate Registration
4. NET calculates $r_c = \prod_{i=1}^{k} r_{c_i}$, $PK_C = PK_C^{r_c}$ and $h_c = g^{r_c}$
5. NET publishes $\text{sign}((PK_C, h_c), SK_{NET})$
6. C checks if $PK_C = h_c^{SK_C}$

Examination
7. $EA \rightarrow C : \{\text{sign(} \text{question, } SK_{EA} \text{)}\}_{PK_C}$
8. $C \rightarrow EA : // C_a = \{\text{question, answer, } PK_C\}$
 $\{C_a, \text{sign(} C_a, SK_C, h_c \text{)}\}_{PK_{EA}}$
9. $EA \rightarrow C : \{C_a, \text{sign(} C_a, SK_{EA} \text{)}\}_{PK_C}$
Marking
10- $EA \rightarrow E : \{C_a, \text{sign}(C_a, SK_{EA})\}_{PK_E}$
11- $E \rightarrow EA : \text{// } M_a = (\text{sign}(C_a, SK_{EA}), \text{mark})$
\{\text{sign}(M_a, SK_E, h_e)\}_{PK_{EA}}$

Notification
12- $EA \rightarrow C : \{M_a, \text{sign}(M_a, SK_E, h_e)\}_{PK_C}$
13- $NET \rightarrow EA : \{\overline{r}_c, \text{sign}(\overline{r}_c, SK_N)\}_{PK_{EA}}$
Huszti Equational Theory

\[
\text{decrypt}(\text{encrypt}(m, pk(k), r), k) = m
\]
\[
\text{getmess}(\text{sign}(m, k)) = m
\]
\[
\text{checksign}(\text{sign}(m, k), pk(k)) = m
\]
\[
\text{exp}(\text{exp}(g, x), y) = \text{exp}(\text{exp}(g, y), x)
\]
\[
\text{checkproof}(\text{xproof}(p, p1, g, \text{exp}(g, e), e),
\quad
p, p1, g, \text{exp}(g, e)) = true
\]
\[
\text{zkpsec}(\text{zkp_proof}(\text{exp}(b, e), e), \text{exp}(b, e)) = true
\]
Huszti’s Protocol

Setup
1 - *EA* publishes \(g \) and \(h = g^s \)
2 - *Committee* \(\rightarrow_{\text{priv}} \) \(EA \):
\[\{ \text{question}, \{ \text{question} \} \}_{\text{SSK}_{\text{committee}}}, \text{time}_{x1} \}_{\text{PK}_{\text{MIX}}} \]

Candidate Registration
3 - \(EA \) checks \(C \)'s eligibility, and calculates \(\tilde{p} = (PK_C)^s \)
4 - \(EA \to NET : \{ \tilde{p}, g_C \} \)
5 - \(NET \) calculates \(p' = \tilde{p}^\Gamma \), and \(r = g_C^\Gamma \), and stores \(time_{nt} \)
6 - \(NET \to C : \{ p', r \} \)
7 - \(C \) calculates \(p = r^{SK_C} \)
8 - \(EA \leftrightarrow C : \text{ZKP}_{eq}((p, p'), (g, h)) \) // \(C \)'s pseudonym: \((r, p, p') \)
Huszti’s Protocol

Examiner Registration
9 - EA checks E’s eligibility, and calculates $\tilde{q} = (PK_E)^s$
10 - $EA \rightarrow E : \{\tilde{q}, g_E\}$
11 - E calculates $q' = \tilde{q}^\alpha$, $t = g_E^\alpha$, and $q = t^{SK_E}$
12 - $EA \leftrightarrow E : \text{ZKP}_{eq}((q, q'), (g, h))$
13 - $E \rightarrow EA : \{t, q, q', h\}$
14 - EA checks $q^s = q'$
15 - $E \leftrightarrow EA : \text{ZKP}_{sec}(SK_E)$
16 - EA stores $\{ID_E, PK_E\}_{PK_{Mix}}, h$

Examination
17 - $C \rightarrow EA : \{r, p, p', h\}$
18 - EA checks $p^s = p'$
19 - $C \leftrightarrow EA : \text{ZKP}_{sec}(SK_C)$
20 - $EA \rightarrow C : \{\text{question}, \{\text{question}\}_{SSK_{\text{committee}}}, time_{x1}\}_{PK_{Mix}}$
21 - $C \rightarrow EA : \{r, p, \{\text{answer}\}_{PK_{Mix}}, time_{x2}\}$
22 - $EA \rightarrow C : \text{Hash}(r, p, p', h, trans_C, \text{question}, time_{x1}, time_{x2} \{\text{answer}\}_{PK_{Mix}})$
Huszti’s Protocol

Marking
23 - $EA \rightarrow E: \{answer\}_{PK_{Mix}}$ // Note that EA stored
{$ID_E, PK_E}_{PK_{Mix}, h}$
24 - $E \rightarrow EA: \{mark, Hash(mark, answer), [Hash(mark, answer)]^{SK_E}, verzkp, t, q\}$
25 - $E \leftrightarrow EA: ZKP_{eq}(Hash(mark, answer), [Hash(mark, answer)]^{SK_E}, (t, q))$

Notification
26 - $EA \rightarrow NET: \{p'\}$ //Note that $r = g^\Gamma_C, p = PK^\Gamma_C, p' = g^{\Gamma_s}_C$
27 - NET calculates $p' = \bar{p}^\Gamma$
28 - $NET \rightarrow EA: \{p', \bar{p}\}$
29 - EA publishes $mark, Hash(mark, answer), [Hash(mark, answer)]^{SK_E}, verzkp$